Department of Mathematics
 Jhargram Raj College
 Jhargram

Class: Mathematics (Honours) Sem - 4

Tutorial Class: 01 Topic: Multivariable Calculus \& Vector Integration. Date: 06.03.2019

1. Prove that $f(x, y)=(a x+b y) \sin \frac{x}{y}, y \neq 0$

$$
0 \quad, y=0 . x, a, b \in \mathbb{R} \text { is continuous at the origin. }
$$

2. Let $f(x, y)=\frac{2 x y^{2}}{x^{2}+y^{4}},(x, y) \neq(0,0)$. Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
3. Let $f(x, y)=1$, if $x y \neq 0$

0 , if $x y=0$. Show that the repeated limit exists at the origin and are equal but the double limit does not exist at the origin.
4. Let $f(x, y)=y \sin \frac{1}{x}+\frac{x y}{x^{2}+y^{2}}, x \neq 0$
$0 \quad, x=0$. Show that one of the repeated limit exists but the other does not and the double limit does not exist at the origin.
5. Show that $f(x, y)=x y \ln \left(x^{2}+y^{2}\right), x^{2}+y^{2} \neq 0$

$$
0 \quad, x^{2}+y^{2}=0 \text { is continuous at the origin. }
$$

6. Show that $f(x, y)=e^{-\frac{|x-y|}{x^{2}-2 x y+y^{2}}}, x \neq y$
$0 \quad, x=y$ is continuous at the origin.
7. Let $f(x, y)=\begin{array}{cc}\frac{y^{3}}{x^{2}+y^{2}}, & x^{2}+y^{2} \neq 0 \\ 0 & x^{2}+y^{2}=0 .\end{array}$ is continuous at the origin
8. Let $f(x, y)=\frac{x^{6}-2 y^{4}}{x^{2}+y^{2}} \quad, x^{2}+y^{2} \neq 0$
$0 \quad, x^{2}+y^{2}=0$. Show that f is differentiable at the origin.
9. Let $f(x, y)=(|x y|)^{p},(x, y) \in \mathbb{R}^{2}$. Show that f is differentiable at the origin only if $p>\frac{1}{2}$.
10. Let $f(x, y)=x^{2} \tan ^{-1} \frac{y}{x}-y^{2} \tan ^{-1} \frac{x}{y}, x y \neq 0$
$0 \quad, x y=0$. Show that $f_{x y} \neq f_{y x}$ at the origin.
11. Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{\imath}+x^{2} \hat{\jmath}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential. Find the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.
12. If $\emptyset(x, y, z)=2 x y z^{2}, \vec{F}=(x y) \hat{\imath}-z \hat{\jmath}+x^{2} \hat{k}$ and C is the curve $x=t^{2}, y=2 t, z=t^{3}$ from $t=0$ to $t=1$. Evaluate (i) $\int \varnothing d \vec{r}$ over C. (ii) $\int \vec{F} \times d \vec{r}$ over C.
13. If $\vec{F}=y \hat{\imath}-x \widehat{\jmath}$. Evaluate $\int \vec{F} . d \vec{r}$ from $(0,0)$ to $(1,1)$ along the following paths C
(i) The Parabola $y=x^{2}$.
(ii) The Straight line from $(0,0)$ to $(1,0)$ and then to $(1,1)$
(iii) The Straight line joining $(0,0)$ and $(1,1)$.
14. Evaluate $\int \frac{-y^{3} \hat{\imath}+x^{3} \hat{\jmath}}{\left(x^{2}+y^{2}\right)^{2}} \cdot d \vec{r}$ where C is the boundary of the square $x= \pm a, y= \pm a$ in the counter clock wise sense.
15. Find the work done in moving a particle once round a circle C in the $x y$ plane, if the circle has centre at the origin and the radius is 3 units and the force field is given by $\vec{F}=(2 x-y+z) \hat{\imath}+\left(x+y-z^{2}\right) \hat{\jmath}+(3 x-2 y+4 z) \hat{k}$.
16. Find the circulation of \vec{F} round the curve C where $\vec{F}=\left(e^{x} \sin y\right) \hat{\imath}+\left(e^{x} \cos y\right) \hat{\jmath}$ and C is the rectangle whose vertices are $(0,0),(1,0),\left(1, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$.
17. If $\vec{F}=\vec{\nabla} \emptyset$, where \emptyset is a single valued and has continuous partial derivatives. Show that the work done in moving a particle from one point $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ in this field to another point $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ is independent of the path joining
the two points and conversely if $\int \vec{F} . d \vec{r}$ over C is independent of the path C joining any two points show that there exists a function \emptyset such that $\vec{F}=\vec{\nabla} \emptyset$.

References:

1. Advanced Differential Calculus of Several Variables by Subir Kumar Mukherjee.
2. Advanced Topics in differential Calculus of Several Variables by Sk Anarul Islam.
3. Vector Analysis by Murray R Spiegel.
4. Vector Calculus by M.D.Raisinghania, H.C.Saxena, H.K.Dass.
